大数据重构安防系统
安防大数据的挑战
大数据存储关键技术
随着安防行业的不断发展,日益丰富的信息采集途径,多样化的业务需求,以及各种行业各种外围业务系统,都要求安防云存储系统具有多业务支撑能力,云存储是最好的解决方案。云存储的核心是分布式文件系统,实现统一的命名空间、负载均衡、数据容错、灵活扩展、高性能的读写能力等。云存储可以将所有业务系统的存储模块统一到同一个存储平台上,支撑各种业务需求,提供了高度的数据共享能力,避免了存储和应用的耦合,降低了重复投资的风险。
随着IP化、高清化、智能化的不断演进,系统存储空间需求日益膨胀,存储的可靠性和成本也成为最重要的考量,在这两个方面,用于数据容错的Erasure Code算法都给出了满意的回答,是公认的下一代容错算法机制,可以代替传统的RAID方式和副本方式,一些主流的公有云存储系统都已经开始采用EC算法。EC算法可以让云存储系统容忍多台设备或者多块硬盘的同时损坏,从而大大加强了系统的可靠性,同时可以做到和RAID5,RAID6同一个级别的空间效率。Erasure Code技术在安防行业云存储的应用,意味着更高的数据可靠性,更好的成本控制。
系统规模变大之后,其管理也需要投入很多资源。对于一个有着成千上万台设备的系统而言,配置管理、扩展和出错处理的自动化显得非常重要。云存储系统可以很好的解决此类问题,以EMC Isilon为例,1分钟就可以完成系统扩展,10分钟完成系统初始化安装和配置。出错处理亦是如此,在设备损坏后,云存储可以保证业务不受任何影响,只需将损坏的设备更换掉即可,后台的数据迁移全部由系统自动处理。
在大量数据读写的时候,还需要考虑到系统的性能能否足够支持上层各种数据业务,比如录像,抓图,回放,视频分析等等,特别是视频分析,需要以最快的速度读出原始视频数据,从海量数据中发掘极低密度的价值,对存储系统是一个很大的考验。云存储系统有着天然的带宽聚合的能力。在数据写入时,用户的数据被系统打散之后存在众多的存储节点中,整个系统的网络带宽和磁盘IO都可以得到充分利用。通过带宽聚合带来的高性能,可以实现文件的高速访问,极大提升智能分析等上层业务的数据处理能力。
当前市面上有一些所谓的监控云存储系统,一般都只存储视频或图像业务相关的数据,和业务是紧密耦合的,数据可靠性和访问速度也得不到保证。在旧的时期,这种系统满足了基本的数据存储需求,但长远来看,是无法适应安防大数据的应用需求的。这类系统没有核心的分布式文件系统支持,不是真正的云存储系统,云存储是实现安防大数据有效存储的必由之路。如图1所示。
声明:
凡文章来源标注为"CPS中安网"的文章版权均为本站所有,如需转载请务必注明出处为"CPS中安网",违反者本网将追究相关法律责任。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
相关阅读
征稿:
为了更好的发挥CPS中安网资讯平台价值,促进诸位自身发展以及业务拓展,更好地为企业及个人提供服务,中安网诚征各类稿件,欢迎有实力安防企业、机构、研究员、行业分析师。投稿邮箱: tougao@cps.com.cn(查看征稿详细)